

Name: Saketh Vishnubhotla
UPI: svis267
ID: 2655131

 12th August 2014

PyjAmaseis
An Application for Educational Seismology

BTech 451 Mid-Year Report

Table of Contents

Introduction ... 3

Setting the Scene ... 3
Seismology and Seismic Waves .. 3
IRIS (Incorporated Research Institute for Seismology) .. 4
IRIS Seismographs for Schools .. 4
TC1 Educational Seismometer .. 4

Problem .. 5
Existing Solutions .. 6

Solution .. 8

Project Overview .. 9
Project Outline .. 9
Core Functionality ... 9
Extra Functionality ..10
Technologies and Services ...10
Project Scope ...11

Implementation.. 11
Pymaseis v0.1- Reading ...12
Pymaseis v0.2 – Processing and saving (mseed) ..12
Pymaseis v0.3 – Displaying (Live) ...14

Challenges .. 18
Version Control System ...18
Inefficient Plotting ..18
Multiple Subplots ...18
Data Reading Frequency Issue ..19

Future Implementation and Considerations ... 21
Header information ..21
Matplotlib Labels ...21
Remote functionality ..22
Threading ...22

Bibliography .. 23

Introduction

Seismology is a topic hardly dealt with or taught in schools. This is due to several
reasons ranging from not having a set curriculum to not having the tools in the
classroom to demonstrate and simulate earthquakes. In an attempt to promote
the teaching of Seismology in schools and to make it the best educational
experience for the students, the Incorporated Research Institutes of Seismology
(IRIS) have invested into an educational program Seismographs in Schools in a
bid to provide all the required components to teach Seismology in schools. IRIS
has created a curriculum involving classroom activities, quizzes, and learning
content. This resource is freely available for teachers to access, allowing them to
structure it into a subject. However, there is more to what is being offered. The
government has funded thousands of schools to acquire a TC1 educational
seismometer that can be used in conjunction with the curriculum provided by
IRIS to make it a highly interactive course for students. Unfortunately the
software that is available today was not developed from a teaching perspective.
Therefore making them too complicated for teachers and students to use.

My 4th year BTech 451 project is based on creating a software application that
can meet the needs of the IRIS curriculum and most importantly reduce all the
complexity whilst providing all the important features required for teachers and
students to engage with seismic data.

In my project so far I have focused on the core features such as reading from the
TC1, saving the data, and finally displaying it live on the screen. This report also
talks about the technologies used in creating the application and the challenges I
have faced so far. Along with this, a list of all the work I plan to do before the end
of the semester is covered.

This report serves to outline and investigate into the problem, and
implementation of a potential solution. This report contains all the work that has
been carried out from the third week of first semester up to the third week of the
second semester including the intersemster break.

Feedback from project presentations has also been taken into consideration and
has been addressed in this report.

Setting the Scene

Seismology and Seismic Waves

Seismology is the study of earthquakes and seismic waves that move through
and around the earth. Seismic waves are the waves of energy caused by the
sudden breaking of rocks within the earth or an explosion. They are the energy
that travel through the earth and is recorded on seismographs.

IRIS (Incorporated Research Institute for Seismology)

Founded in 1984 with support from the National Science Foundation, IRIS is a
consortium of over 100 US universities dedicated to the operation of science
facilities for the acquisition, management, and distribution of seismological data.
IRIS programs contribute to scholarly research, education, earthquake hazard
mitigation, and verification of the Comprehensive Nuclear-Test-Ban Treaty.

IRIS Seismographs for Schools

One of IRIS’s educational programs – Seismographs in Schools, serves teachers
across the country and around the world using seismic instruments such as the
TC1 educational seismometer or real-time seismic data in K-16 classrooms. The
IRIS’s site includes tools to share seismic data in real-time, curriculum to teach
seismology, classroom activities, and technical support documents for seismic
instruments. Their hope is to bridge the gap between science classrooms to
create an international educational seismic network.

TC1 Educational Seismometer

The TC1 is a simple vertical seismometer. Its natural period is less than one
second. The current version reflects the latest set of modifications since the first
version in 2005. It is very “Kid” friendly and uses a “Toy Slinky Spring”, magnets,
and a coil. The entire seismic system is composed of the sensor, an amplifier
called NERdaq, a computer, and a software application.

The signal coming directly from the seismometer is quite weak and requires
amplification in order to see activity. It also requires conversion form an analog

Figure 1. IRIS – Incorporated
Research Institutes of Seismology

Figure 2. IRIS Seismographs in Schools

to digital signal. Martin Smith and Chris Knudsen have created the NERdaq: an
amplifier, filter and Analog-to-Digital signal converter in one device.

It may be a surprise to those unfamiliar with the TC1 that this seismometer does
a remarkable job of seeing and recording earthquakes, small and large, from near
and far. It can record earthquakes from all around the world. Most home-built
seismic sensors target recording events greater than 7M Worldwide. This system
does much better, recording greater than 6M in most cases worldwide and local
events greater than 2M.

The government has provided funding to thousands of schools in USA to acquire
the TC1 seismometer. In a similar way, the NZ government is also looking into
doing the same.

Problem

I would like to now summarize what has been said above and introduce the
problem this project aims to address. As you have read, IRIS has an educational
program called Seismographs in Schools that they have made available to
teachers teaching Seismology in schools. IRIS aims to provide the curriculum,
technical documentation for various educational seismometers and classroom
activities and software tools to teach Seismology and allow students engage with
seismic data.

However, the problem here lies with the software. The current software that is
available and is being used by the teachers to teach is far too complicated to be
used in a classroom scenario. Most seismology suites are built for professional
seismologists and the less professional ones are still too difficult for students to
use or learn seismology from.

Figure 3. TC1 Seismometer Figure 4. Richter scale showing
Magnitudes

So you can think of this as a three-piece puzzle, where the first piece is the
curriculum, which is in already place (provided by Seismographs for Schools
program), the second piece is the hardware (TC1 educational) which is also
available, but the final piece – a simple easy to learn and use application that
supports the curriculum and provides the basic features required to engage with
seismic data is missing.

Existing Solutions

There are a number of libraries and modules available that let us work with
seismic data but not too many applications. Among these most are limited to one
platform (runs on only one operating system) and are too complex for students
to engage with.

A professional seismic processing and imaging solutions suite is offered by
Paradigm. This software is highly professional and was built for professional
seismologists. The Paradigm seismic processing and imaging solutions reduce
uncertainty and improve reliability through better seismic signal quality,
positioning, and content. Their proprietary algorithms translate billions of bits of
seismic data into highly accurate, high-definition images of the subsurface,
enabling geoscientists to visualize the earth’s formations.

Although Paradigm seismic processing and imaging solutions provide high
definition imaging tools and accurate seismic data plotting, it’s far too
complicated for teachers let alone students to use in order to learn seismology.

Figure 5. Paradigm software showing GeoDepth velocity determination, modeling and imaging

Let’s now take a look at the software that is currently being used to teach
seismology. This software is called jAmaSeis.

jAmaSeis facilitates the study of seismological concepts and allows users to
obtain data in real-time from either a local instrument or from remote stations.
As a result, users without an instrument can utilize the software. Users can view
a graphical representation of seismic data in real time and can process the data
to determine the characteristics of seismograms such as time of occurrence,
distance from the epicenter to the station, magnitude, and location (via
triangulation).

Figure 6. Paradigm software showing seismic velocity model with salt

jAmaSeis contains all the basic functionality required in a seismology data
processing suite to fit the Seismographs in Schools Program curriculum and
goals, however it has been reported to be a struggle for students to start getting
comfortable with using and learning from this software as the user interface is
not easy to understand and not many learning cues provided. The software
provides the functionality but is not focused on being a learning tool and most of
the intricate functionality also is not used.

Solution

Figure 7. jAmaSeis Event mode analysis

Figure 8. jAmaSeis Stream View

The missing piece of the puzzle is a software application that can replace
jAmaSeis whilst ensuring it contains all the core functionality required to be an
effective seismology data processing and sharing suite. The solution needs to be
specifically targeted to support the learning of students by integrating effective
visual cues that increases student engagement and understanding of seismology.
Hence this application will need to provide all the essential features of a
seismology suite and improve on where jAmaSeis lacks which is not being
focused on ease of use and intuitiveness.

The solution will aim to incorporate the following elements:

 The essential functionality
o Collecting information from TC1 seismometer
o Processing this data
o Displaying data live
o Saving data
o Sharing data

 Simple and Intuitive Interface
 User Friendly
 Accuracy
 Robust
 Fault Tolerant

Thus creating a software application for seismology by incorporating the above
functionality, we can create the perfect learning environment for students to
learn and engage with seismic data.

Project Overview

Project Outline

The aim of this project as identified above, is to create an application that is cross
platform and incorporates all the important elements described above.

The project scope is to build a simple and intuitive native python based
application that will process, display and share earthquake signals with other
schools online. I will be developing a robust and user-friendly application that
can be easily used by teachers and students to engage with seismic data. I will
build a python-based interface by incorporating ObsPy (seismic data processing
suite in python) and Matplotlib (comprehensive 2D plotting library).

Core Functionality

The core functionalities that is required to be built into the application are:

 Reading (from TC1 seismometer)
 Processing (decoding, casting)
 Displaying (Live Plotting)
 Saving (mseed)

 Sharing (Seedlink Server)

Extra Functionality

The extra functionalities that will be looked into are:

 Zoom in/out on plot
 Save selected part of a plot as an mseed
 Automatic Screenshots of the plot
 Set custom x (minutes) and y (hours) axis
 Visual cues that map seismic data to preset scenarios to identify cause of a

seismic behavior

These extra functionalities are required in order to make the application more
effective and easier to work with. Some of these allow the student to get a more
detailed view of the seismic data displayed and some enhance the learning by
pointing at specific parts of the seismograph and explaining its behavior.

Technologies and Services

To carry out this project my supervisor has requested me to develop the
application in Python and utilize the ObsPy and Matplotlib modules to achieve
the required functionality.

Below are the technologies and services that will be used to develop the
application:

 Python 2.7
o Application will be developed using the Python

programming language. This application will be cross
platform.

 ObsPy 0.92
o ObsPy is an open-source project dedicated to provide a Python

framework for processing seismological
data. It provides parsers for common file
formats, clients to access data centres
and seismological signal processing
routines, which allow the manipulation of seismological time
series.

 Matplotlib 1.3.1
o A comprehensive plotting library for

Python
o Used for plotting the data collected

from the TC1 seismometer

 GNUPlot 4.6.2

o Plotting application used to plot data in text file

 Seedlink Plotter
o Creates 24 hour day plots using hour long mseed files

 Seedlink Server

o Hosts mseed files
o SEED stands for Standard for Exchanging

Earthquake Data
o Mseed stands for Mini Standard for Exchanging Earthquake Data

 jAmaseis 1.00.0

o Existing seismology application which
I referred to, to learn how to display seismic
data

 Git

o Used to keep track of various versions of the
application and keep track of incremental changes

 tKinter 3.3.5
o Graphical user interface library for python

Project Scope

There are 3 components to this project:

1. Local Python-based application that can process, display and save seismic
data (mseed)

2. Adding remote access capabilities by being able to post saved mseed files
and regular application screenshots to Seedlink Server, and retrieving and
displaying seismic data and screenshots from the Seedlink server

Implementation

The aim of the development is to work through each core feature and implement
it correctly then move on to extra functionality. After creating a requirements
document with Dr. Kasper van Wijk, I began working on my project. I started by
setting up the Python environment and installing the PySerial module on my
laptop running windows.

Pymaseis v0.1- Reading

The first version of the application was simply focused on reading the data
coming in from the TC1 via the serial port and printing these values to see what I
was getting.

The Python script I wrote, therefore I opened the port to read this data using the
stream.readline() method from the PySerial module. I then saved this
information in a .dat file (data.dat) which would then be plotted using the
application called GNUPlot.

The image to the left shows the data saved into a data.dat file, and the image to
the right illustrates that data after being plotted using GNUPlot. Here we can see
most values lie between 32000 and 33000.

Pymaseis v0.2 – Processing and saving (mseed)

From here I focused on the second core feature which was to save the data in an
mseed formatted file. This is a very important feature that is needed to be
developed because in order to share the data collected by the TC1 we have save
it in the mseed format. This functionality is important and is required for the
Seismographs for Schools program because their goal is to create a network of
schools that can share data with each other.

Figure 9. Data
from TC1 saved in

data.dat Figure 10. GNUPlot plotting data from
data.dat

The image below shows many mseed files that were generated as the script was
run. The way this works is first I create a header object in Python which contains
the locational information (Geo location, station ID etc…). The header object
along with the array of data which stores values from the past hour are used to
create a trace object. The trace object is then saved as an mseed file. This is done
with the help of the ObsPy module. The ObsPy write() method allows us to call it
on a trace object and save the information (header and data) as an mseed file for
example: trace.write(header, data) <- where data is an array containing all the
values collected in the last 1 hour.

As per the requirements, I am saving hour long mseed files (an mseed created
after every 3600 seconds) but this can be changed to save them at shorter
intervals.

Along with saving mseed files, I also introduced a simple graphical user interface
to start and stop the data collection. For this I used tKinter 3.3.5.

Also in this version I used the trace.plot() method to create a static plot of every
trace object created before saving it as an mseed file. So altogether from saving
the data collected to mseed, having a simple graphical interface and plotting
regular static plots of the data, this version did the core features well. An issue I
had with this version was that the windows that was display with the plot had to
be manually closed before the next window could come up.

Figure 11. Pymaseis first graphical
user interface made using tKinter

Figure 12. Pymaseis generating saving mseed
files every x amount of seconds

Pymaseis v0.3 – Displaying (Live)

In this version of Pymaseis I worked on the most visually appealing aspect of the
application, the live updating plot. Initially I was saving all the data that was
being read from the TC1 to an array, clearing the plot, and plotting that array
every 10 milliseconds. With this method all the previous points were constantly
redrawn with the new values. This proved to be very inefficient and also started
to produce latency issues. Therefore to tackle this issue I looked into a way to
plotting without clearing the already existing plot and plotting the new values to
the existing plot. I achieved this by firstly removing the method that clears the
plot (plt.cla()) then as new values were read, along with appending them to the
hour long array for mseed files, I saved them in a separate array or plotting only.
Hence the array for plotting always contained only the new values that need to
be added to the plot. Using this array, I started plotting on the same plot which
gave me the result that I wanted except each set of values were distinct and were
not connected to the previous set of values. This is because in order for the joint
to exist the array of new values must start from where the previous plot left off.
So after understanding this, I would retrieve and save the last value of the array
in a variable that was then inserted into the array before the new values were
added. That way the plot would start from the last point the previous plot
finished giving us a continuous plot. All latency issues were solved and data was
being plotted accurately. The x axis of the plot represented in minutes in order to
ensure I was accurately plotting the data to the right minute, second and
millisecond, I used the datetime module to get the current time in minute, second
and millisecond for each value that was read from the TC1. This was then used to
plot the value. This proved to work really well and create a highly accurate plot.

The next phase in this version was to get the axis correctly representing the
current hour (y axis) and minute (x axis). Using the set xticks method that was
provided in the matplotlib module, I set the x axis to go from 0 – 60 with an
interval of 1. Setting the y axis ticks was trickier. The aim here was to have 24
plots in 1 plot. Initially I tried using the add_subplot() provided by the matplotlib
module to create 24 distinct plots in 1 figure. But this didn’t work out too well.
The plots were too small to view and couldn’t be joined which wasted space in
between. So then I decided I will stick to 1 subplot inside the figure and translate
the values accordingly to create 24 plots in 1subplot. To begin with, I wrote a
method that calculates the number that occurs the most in an array, and used the
method to calculate the value TC1 provides when it is at rest. That means, when
the seismometer is not disturbed by any seismic activity, it rests on or near a
certain value and my aim was to find out what that was. Why I need it will be
explained shortly. After several tests I found that the mode number was roughly
32750. With this information I understood that the graph oscillated between the
values of 30750 and 34750 with 32750 being at the center of oscillation. Thus I
multiplied this distance by 24 to get the upper limit of the graph. All values that
come from the TC1 are between 30750 and 34750 and depending on the hour
they are translated to the appropriate hour. Once I managed to get 24 plots to

Figure 13. Plot of data displayed when trace.plot() is called after saving mseed

show on 1 subplot, I looked into getting the ytick labels. This was required
because until now the y axis was not informative. It has to display the hours, so
using the datetime module I calculated the current hour and wrote a method
which used this information to generate an array containing the next 24 hours
along with providing their appropriate am/pm information.

The above image shows the first version of live plotting where I was plotting the
whole array repeatedly as it received new values. Note the x, y axis only
represent the values that were coming in, and not representing the hour and
minute that they were read from the seismometer.

Figure 14. Pymaseis first attempt at live plotting

Moving on from there as explained earlier, once I managed to get the live plotting by plotting only the new values in the array, I worked
on making the x axis more meaningful. As you can see the x axis now goes from 0 to 60 with intervals of 1.

Figure 15. Pymaseis x axis corrected and accurate plotting in x axis implemented

Figure 16. Pymaseis y axis corrected and hourly plotting achieved with total of 24 hours

Finally the last thing I worked on this version was getting the y axis to display
the hours. This has been explained above. Currently this is as far as I have gotten
with my development of the application – plotting live data to the exact
millisecond (x) and hour (y). Note once the top plot reaches 60 minutes, it
automatically starts at potting on the start of the next hour. This was
demonstrated in the live demo at the mid-year presentation.

Challenges

I faced various challenges over the course of the development so far. Some of
these are described here.

Version Control System

For a large part of the project so far I didn’t use a version control system, and
slowly I found myself struggling to find the right Python script among all the test
scripts I had made. Also due to not naming them correctly, lost track of what
script contained which functionality. I tried to get each core function working
independently before joining them. So due to not being able to effectively keep
track of the files I was using, I ran into duplication issues and was also unable to
keep track of changes. That’s when I realized I need to use a VCS to manage my
project and started using Git to organize and keep track of my project progress.

Inefficient Plotting

This has been explained before, and I will briefly repeat it here. I was using 1
array to hold all the values that were being read from the TC1, and this array was
used to create the plot. All new values were appended to this array and the plot
was cleared and this array holding all the old and the new values was plotted.
This was done every 10 milliseconds. This style of plotting quickly caused
latency issues between the events that took place and captured by the TC1 and
the actual time they were displayed on the plot. The plot would also freeze after
a while. To fix this, I created a second array that only stored the new values, and
plotted this array over the previous plot.

Multiple Subplots

This challenged I faced here has been briefly explained before and I will go into
detail about it here. Matplotlib allows us to create sub-plots within 1 figure. That
means you can create multiple separate plots within one figure. However as you
can see in the image below, when I created 24 sub plots the outcome was not
pleasing. The data plotted couldn’t be accurately seen as the plots were too small
and too close to each other. Hence I decided to move away from making multiple
subplots to creating using 1 plot and translating the values according to the
correct hour. This proved to be more effective and helped create a user interface
that wasn’t cluttered.

Data Reading Frequency Issue

This is a recent issue that I faced which started last week, the image directly
below shows the output that was being potted. The problem here was I was
receiving values from the TC1 that when plotted resulted in plots as shown
below. For example, the second image shows that in an array of values ranging
from 87000 to 88000, an unexpected 919 value gets saved in the array. This
causes the plot to draw a line from the current value to the 919 value. This
results in distorted plots. Initially I thought this could have been a hardware
problem, however after consulting my industry supervisor Dr. Kasper van Wijk I
was told that the TC1 pushes only 18 values per second. Meaning the USB
cable/and serial port will only hold 18 values per second and by trying to read
more than 18, I get inaccurate values that when plotted result in distorted plots.
Hence I fixed the rate at which I was reading values to address this issue.

Figure 17. Using add_subplots() to create 24 subplots in one windows

Figure 19. Cause of distorted plots found to be incorrect value in plotting array

Figure 18. Distorted plot

Future Implementation and Considerations

The following is the work that will be carried out over the next 11 weeks before
the semester ends.

Header information

Till now the mseed files that are being created contain only the array of
information (data) but don’t contain any header information (locational
information). In order to do this I need to save the information entered by the
user into a header object. To facilitate this I have created a simple GUI to allow
the user to enter this information. This is done using tKinter 3.3.5 and looks like
the image below. Currently the GUI is developed, but the backend still need to be
written. Note the Latitude, Longitude and Elevation fields will be auto filled.

Matplotlib Labels

One of the very important features that I will be looking into to making the user
interface more targeted towards students and student learning, is to provide
visual cues such as popups and labels that will display when a prerecorded
seismic behavior is noticed. Labels are a feature provided by Matplotlib and I will
be looking to incorporated them effectively to align with the overall learning goal
of application. Examples of how I will be using pointers and labels are shown
below.

Figure 20. GUI for collecting locational information before plotting begins

Remote functionality

This is the functionality that allows the application to post mseed files and
screenshots to the Seedlink server and also retrieve and plot mseed files from
the Seedlink server. This is phase two of the application and is very important
because it is a requirement from IRIS Seismographs for Schools program where
each school should be able to exchange earthquake data.

Threading

Till now the data reading model works like a sampler where it reads for a while
then goes and plots that data, then comes back and reads and so on. Although
this is working efficiently, the ideal situation would be to break the reading and
plotting functionality and run them on separate threads to enhance the overall
efficiency of the application. This will be looked into over the next few weeks.

Figure 21. Matplotlib Pointers Figure 22. Matplotlib Labels

Bibliography

[1] “Paradigm Advanced Science for everyone”.
http://www.pdgm.com/solutions/seismic-processing-and-imaging/, August
2014

[2] jAmaseis: Seismology Software Meeting the Needs of Educators. 2009

[3] Larry Cochrane. Winquake version 2.8 documentation, October 2009.
http://psn.quake.net/software/wq28doc.pdf.

[4] IRIS. Iris - education and outreach.
http://www.iris.edu/hq/programs/education_and_outreach. Accessed August 3,
2014.

[5] IRIS. Iris - incorporated research institutions for seismology.
http://www.iris.edu/hq/. Accessed August 3, 2014.

[6] Ben Coleman and Joseph Gerencher. A software system for real-time sharing
of seismic data in educational environments. June 2008.

[7] Joseph Gerencher and Ronald Jackson.Classroom utilization of a multi-axis
lehman seismograph system. Journal of Geological Education, 1991.

[8] Joseph Gerencher and Michael Sands. Online near-real-time seismic system
for the classroom. Journal of Geological Education, 2004.

http://www.pdgm.com/solutions/seismic-processing-and-imaging/
http://www.iris.edu/hq/programs/education_and_outreach
http://www.iris.edu/hq/

